\(\int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx\) [1374]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 355 \[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\frac {\sqrt {g} \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f}-\frac {\sqrt {b} \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a \sqrt [4]{-a^2+b^2} f}-\frac {\sqrt {g} \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f}+\frac {\sqrt {b} \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a \sqrt [4]{-a^2+b^2} f}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}} \]

[Out]

arctan((g*cos(f*x+e))^(1/2)/g^(1/2))*g^(1/2)/a/f-arctanh((g*cos(f*x+e))^(1/2)/g^(1/2))*g^(1/2)/a/f-arctan(b^(1
/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*b^(1/2)*g^(1/2)/a/(-a^2+b^2)^(1/4)/f+arctanh(b^(1/2)*(g*cos
(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*b^(1/2)*g^(1/2)/a/(-a^2+b^2)^(1/4)/f-g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/c
os(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/f/(b-(-a^2+
b^2)^(1/2))/(g*cos(f*x+e))^(1/2)-g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*
e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/f/(b+(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.355, Rules used = {2977, 2645, 335, 304, 209, 212, 2780, 2886, 2884, 211, 214} \[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=-\frac {\sqrt {b} \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a f \sqrt [4]{b^2-a^2}}+\frac {\sqrt {b} \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a f \sqrt [4]{b^2-a^2}}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{f \left (b-\sqrt {b^2-a^2}\right ) \sqrt {g \cos (e+f x)}}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{f \left (\sqrt {b^2-a^2}+b\right ) \sqrt {g \cos (e+f x)}}+\frac {\sqrt {g} \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f}-\frac {\sqrt {g} \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f} \]

[In]

Int[(Sqrt[g*Cos[e + f*x]]*Csc[e + f*x])/(a + b*Sin[e + f*x]),x]

[Out]

(Sqrt[g]*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a*f) - (Sqrt[b]*Sqrt[g]*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/
((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*(-a^2 + b^2)^(1/4)*f) - (Sqrt[g]*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a*f
) + (Sqrt[b]*Sqrt[g]*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a*(-a^2 + b^2)^(1/
4)*f) - (g*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/((b - Sqrt[-a^2 + b^2]
)*f*Sqrt[g*Cos[e + f*x]]) - (g*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/((
b + Sqrt[-a^2 + b^2])*f*Sqrt[g*Cos[e + f*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2977

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a}-\frac {b \sqrt {g \cos (e+f x)}}{a (a+b \sin (e+f x))}\right ) \, dx \\ & = \frac {\int \sqrt {g \cos (e+f x)} \csc (e+f x) \, dx}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)} \, dx}{a} \\ & = -\frac {\text {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{g^2}} \, dx,x,g \cos (e+f x)\right )}{a f g}+\frac {1}{2} g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx-\frac {1}{2} g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx-\frac {\left (b^2 g\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) g^2+b^2 x^2} \, dx,x,g \cos (e+f x)\right )}{a f} \\ & = -\frac {2 \text {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{g^2}} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f g}-\frac {\left (2 b^2 g\right ) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f}+\frac {\left (g \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 \sqrt {g \cos (e+f x)}}-\frac {\left (g \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 \sqrt {g \cos (e+f x)}} \\ & = -\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {g \text {Subst}\left (\int \frac {1}{g-x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f}+\frac {g \text {Subst}\left (\int \frac {1}{g+x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f}+\frac {(b g) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g-b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f}-\frac {(b g) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g+b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{a f} \\ & = \frac {\sqrt {g} \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f}-\frac {\sqrt {b} \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a \sqrt [4]{-a^2+b^2} f}-\frac {\sqrt {g} \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a f}+\frac {\sqrt {b} \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a \sqrt [4]{-a^2+b^2} f}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 22.22 (sec) , antiderivative size = 534, normalized size of antiderivative = 1.50 \[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\frac {\sqrt {g \cos (e+f x)} \csc (e+f x) \left (8 a b \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)+3 \left (2 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )+4 a^2 \arctan \left (\sqrt {\cos (e+f x)}\right )-4 b^2 \arctan \left (\sqrt {\cos (e+f x)}\right )+2 a^2 \log \left (1-\sqrt {\cos (e+f x)}\right )-2 b^2 \log \left (1-\sqrt {\cos (e+f x)}\right )-2 a^2 \log \left (1+\sqrt {\cos (e+f x)}\right )+2 b^2 \log \left (1+\sqrt {\cos (e+f x)}\right )-\sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4} \log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4} \log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )\right ) \left (a+b \sqrt {\sin ^2(e+f x)}\right )}{12 a \left (a^2-b^2\right ) f \sqrt {\cos (e+f x)} (b+a \csc (e+f x))} \]

[In]

Integrate[(Sqrt[g*Cos[e + f*x]]*Csc[e + f*x])/(a + b*Sin[e + f*x]),x]

[Out]

(Sqrt[g*Cos[e + f*x]]*Csc[e + f*x]*(8*a*b*AppellF1[3/4, 1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^
2 + b^2)]*Cos[e + f*x]^(3/2) + 3*(2*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e +
 f*x]])/(a^2 - b^2)^(1/4)] - 2*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]
])/(a^2 - b^2)^(1/4)] + 4*a^2*ArcTan[Sqrt[Cos[e + f*x]]] - 4*b^2*ArcTan[Sqrt[Cos[e + f*x]]] + 2*a^2*Log[1 - Sq
rt[Cos[e + f*x]]] - 2*b^2*Log[1 - Sqrt[Cos[e + f*x]]] - 2*a^2*Log[1 + Sqrt[Cos[e + f*x]]] + 2*b^2*Log[1 + Sqrt
[Cos[e + f*x]]] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sq
rt[Cos[e + f*x]] + b*Cos[e + f*x]] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(
a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]]))*(a + b*Sqrt[Sin[e + f*x]^2]))/(12*a*(a^2 - b^2)*f*Sqrt
[Cos[e + f*x]]*(b + a*Csc[e + f*x]))

Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.52

method result size
default \(-\frac {\sqrt {g}\, \ln \left (\frac {4 g \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+2 \sqrt {g}\, \sqrt {-2 g \left (\sin ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+g}-2 g}{-1+\cos \left (\frac {f x}{2}+\frac {e}{2}\right )}\right ) \sqrt {-g}+\sqrt {g}\, \ln \left (-\frac {2 \left (2 g \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-\sqrt {g}\, \sqrt {-2 g \left (\sin ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+g}+g \right )}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right ) \sqrt {-g}+2 g \ln \left (\frac {2 \sqrt {-g}\, \sqrt {-2 g \left (\sin ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+g}-2 g}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )}\right )}{2 a \sqrt {-g}\, f}\) \(185\)

[In]

int(csc(f*x+e)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-1/2/a/(-g)^(1/2)*(g^(1/2)*ln(2/(-1+cos(1/2*f*x+1/2*e))*(2*g*cos(1/2*f*x+1/2*e)+g^(1/2)*(-2*g*sin(1/2*f*x+1/2*
e)^2+g)^(1/2)-g))*(-g)^(1/2)+g^(1/2)*ln(-2/(cos(1/2*f*x+1/2*e)+1)*(2*g*cos(1/2*f*x+1/2*e)-g^(1/2)*(-2*g*sin(1/
2*f*x+1/2*e)^2+g)^(1/2)+g))*(-g)^(1/2)+2*g*ln(2/cos(1/2*f*x+1/2*e)*((-g)^(1/2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(
1/2)-g)))/f

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate(csc(f*x+e)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {g \cos {\left (e + f x \right )}} \csc {\left (e + f x \right )}}{a + b \sin {\left (e + f x \right )}}\, dx \]

[In]

integrate(csc(f*x+e)*(g*cos(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)

[Out]

Integral(sqrt(g*cos(e + f*x))*csc(e + f*x)/(a + b*sin(e + f*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \csc \left (f x + e\right )}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(csc(f*x+e)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(g*cos(f*x + e))*csc(f*x + e)/(b*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \csc \left (f x + e\right )}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(csc(f*x+e)*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(sqrt(g*cos(f*x + e))*csc(f*x + e)/(b*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \csc (e+f x)}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {g\,\cos \left (e+f\,x\right )}}{\sin \left (e+f\,x\right )\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int((g*cos(e + f*x))^(1/2)/(sin(e + f*x)*(a + b*sin(e + f*x))),x)

[Out]

int((g*cos(e + f*x))^(1/2)/(sin(e + f*x)*(a + b*sin(e + f*x))), x)